If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4x^2+200=0
a = -4; b = 0; c = +200;
Δ = b2-4ac
Δ = 02-4·(-4)·200
Δ = 3200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3200}=\sqrt{1600*2}=\sqrt{1600}*\sqrt{2}=40\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{2}}{2*-4}=\frac{0-40\sqrt{2}}{-8} =-\frac{40\sqrt{2}}{-8} =-\frac{5\sqrt{2}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{2}}{2*-4}=\frac{0+40\sqrt{2}}{-8} =\frac{40\sqrt{2}}{-8} =\frac{5\sqrt{2}}{-1} $
| –3x=–12 | | 8(a-7)=2(4+5) | | 15+x/2=45 | | 2j+5=3+2j+2 | | 1.2x–1.7x=10 | | -3y+3=-6y+18 | | 6(5+y)=2(3-y) | | 1/2(-1y+1)+1/4y-2=0 | | -5=-13y-64 | | 4x+Y=20;Y=x+5 | | 75/125=x/1300 | | 8/q=64/ | | F(x)=7x^2-84 | | r÷3=6+1 | | (2z+1)(4+z)=0 | | 3x+(-1)=14 | | 1/2*(1-y)+1/4y=2 | | x^2=160000 | | y+4.72=8.91 | | -8a+4a=12-a | | 7=2y-5 | | y-5.5=7.26 | | 5x-8=7+6 | | 16y+y=-14 | | y=2=1/2*0 | | 8/a=24 | | 58+68=3x | | -x+2-1/2x=2 | | -6x^2+12x=7 | | 135-x=45 | | 10+5x+20=180 | | x^2+4x+4=12 |